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PROBLEM OF STOCHASTIC CONTROL OF ENTERPRISE  
 

 Introduction. In this work we extend the approach of the 

previous researches to the measurement feedback case. We remove the 

assumption that the state of the system is available for feedback and 

show how algorithms from the previous researches can be used in the 

measurement feedback case. We derived solvability conditions for the 

problem but analytical computation of the optimal controller turned out 

to be extremely difficult task. The feasibile approach is to use model 

predictive control technique. So far, we have obtained several 

computational algorithms for model predictive control of constrained 

systems that are subject to stochastic disturbances. These results have 

been based on the assumption that all states of the plant are available for 

feedback. 
Resultst. In this scientific work, we consider the more general 

case in which we assume that output of the plant is measured and 

available for feedback. In this case, static feedbacks are no longer 

sufficient and we need to study dynamic feedbacks.  

We consider the plant given by the discrete time state space 

equations 
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 where u  is the control input with  mRUtu  and x  is the 

state with   nRtx  . 

The set U is a not necessarily bounded, closed, convex set 

which contains an open neighborhood of the origin. We assume that 

constraints on the state x are imposed in that x(t) is supposed to belong 

to a convex, closed set 
nRX   that contains the origin in its interior. 

The second equation describes the measured output y 

with   dRty  . The output to be controlled is z with   pRtz  . The 

disturbance w and the measurement noise η are two mutually 

independent stochastic processes with    wQtw ,0  and     Qt ,0  

where N(0,Q) denotes the family of normally distributed random 



variables with zero mean and covariance matrice Q. Moreover, for 

jk  , w(k) and w(j) are independent as well as η(k) and η(j). Note that 

this implies that also the state x, the measurement y and the controlled 

output z are stochastic processes. 

Thus, we consider a linear, time invariant plant, subject to 

stochastic disturbances with a constrained input and a constrained state 

variable. The measurement output y is available for feedback. When the 

plant is subject to stochastic disturbances, the constrained input limits 

the ability to control the plant, as already discussed. Therefore, the 

following assumption is necessary.  

We consider a problem of choosing u such that the following 

cost is minimized. 
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subject to the state equations (1) with x(0) = x where  RRRj mn;  

is a strictly convex function with j(0, 0) = 0. The choice of the function j 

depends on the problem at hand. The case where only the input u is 

constrained (i.e.
nRX  ) has been treated. In this case, the function j 

has been chosen as a quadratic function.The general case with 

constraints on the state and the input has been treated in chapter 4, 

where we redefined the cost j so as to include an exponential penalty on 

state violations. Therefore, the structure of the cost (2) is general enough 

to capture different problems. 

The control input u has to be chosen such that u(t) is a function 

of all past measurements. 

Ultimately, we will wish to implement the controller by means 

of a digital computational device, which implies that at least 1 time unit 

will be required to calculate the next control action. Because of this, we 

assume that at time t measurements y(τ), 0<τ<t are used for computation 

of the input u(t). Thus, the system (1) is controlled by means of a strictly 

causal dynamic feedback controller which is assumed to be 

representable by the state equations 
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with the initial condition r(0)=0 and where functions  
gdg

con RRRf :  and mg

con RRg   are continuous functions with 

0)0(0)0,0(  concon gandf and where dim(r) is the (undecided) 

state dimension of the controller. We denote the set of all feedback 

controllers of the form (3) by  con . 



 

 
Figure 1. The system (1) is controlled by strictly causal feedback 

controller (3) 

 

In general, the state of the plant is subject to constraints and we 

have only partial information about the state via output measurements. 

The standard approach is to use an optimal state observer to estimate the 

state of the plant. The state observer that we use for the purpose of 

optimal state estimation is the well known Kalman filter. A 

measurement feedback controller then have two separate tasks: the state 

estimation and the computation the optimal input that is based on the 

static feedback from the estimated state. Within the classical Linear 

Quadratic Gaussian framework, it is possible to obtain the optimal 

controller by this approach, according to the well known "separation 

principle". 

In section 2 we propose a problem setup for optimal control of 

systems with the hard constraints on input and possible constraints on 

the state. When constraints on the state are present, the constraint 

violation cost is added to the cost function which makes the overall cost 

function non quadratic in general. 

The problem setup does not fit in the classical LQG framework 

because of the input constraints and the possibly non quadratic cost 

function. The  separation principle" does not necessarily give an optimal 

controller in this case. In section 3 we study this issue and investigate in 

which cases the solution based on the "separation principle" gives an 

optimal controller and in which cases we have to find an alternative 

control structure. 

In section 4, we design a model predictive controller that uses 

the optimal state estimate of the plant as an initial state for prediction. 

The feedback structure that is inherent to the problem (i.e. the estimated 

state of the plant is used for feedback) is taken into account in the 

prediction. The difficulty is that the output measurement is not available 

over the control horizon and the correction of the prediction is not 



possible as in the standard Kalman filtering algorithm. To overcome this 

difficulty, we consider the innovation of the prediction as a stochastic 

process. We present an algorithm for model predictive control of 

stochastic systems via measurement feedback. 

Finally, in section 5 we present two examples in which we 

implement a model predictive controller developed the section 4 on the 

system with constrained input and the double integrator system. 

Conclusion. In this work we consider optimal control of linear, 

constrained stochastic systems via measurement feedback. We chose a 

controller from a set of strictly proper dynamic controllers. The 

controller has three main tasks: to render the closed loop system stable, 

to control the system so that constrains on the state are respected as 

much as possible and to minimize the performance measure when states 

are away from the constraint boundary. Since the state is not available 

for the measurement it is necessary to design a state estimator. The 

estimation has to be performed optimally, in the sense that the 

estimation error should have the minimum variance. This estimator is 

well known Kalman filter. A static feedback controller is than used to 

determine the input to the system, based on the estimated state. 

Finally, we present an example in which we use model 

predictive controller developed in this chapter on the double integrator 

system. The simulation results show improved performance compared 

to the standard model predictive controller even for the relatively small 

number of samples. 

 

Bibliography 

 

1. K. J. Aström. Introduction to stochastic control theory. Academic 

Press, New York, 1970. 

2. B. D. O. Anderson and J. B. Moore. Linear optimal control. Prentice 

Hall, Englewood Cliffs, 1971. 

3. B. D. O. Anderson and J. B. Moore. Optimal Filtering. Prentice Hall, 

Englewood Cliffs, 1979. 

4. Model predictive control for stochastic systems by randomized 

algorithms / by Ivo Batina. - Eindhoven : Technische Universiteit 

Eindhoven, 2004. 

5. P.R. Kumar Pravin Varaiya. Stochastic Systems: Estimation, 

Identification and Adaptive Control. University ofIllinois University of 

California, Prentice HaiJ. Inc., Englewood Gifts, New Jersey, 1986. 

 


